Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36903889

ABSTRACT

Despite being an increasingly important source of genes for crop breeding aimed at improving food security and climate change adaptation, crop wild relatives (CWRs) are globally threatened. A root cause of CWR conservation challenges is a lack of institutions and payment mechanisms by which the beneficiaries of CWR conservation services (such as breeders) could compensate those who can supply them. Given that CWR conservation generates important public good values, for the significant proportion of CWRs found outside of protected areas, there is a strong justification for the design of incentive mechanisms to support landowners whose management practices positively contribute to CWR conservation. This paper contributes to facilitating an improved understanding of the costs of in situ CWR conservation incentive mechanisms, based on a case study application of payments for agrobiodiversity conservation services across 13 community groups in three districts in Malawi. Results demonstrate a high willingness to participate in conservation activities, with average conservation tender bids per community group being a modest MWK 20,000 (USD 25) p.a. and covering 22 species of CWRs across 17 related crops. As such, there appears to be significant potential for community engagement in CWR conservation activities that is complementary to that required in protected areas and can be achieved at modest cost where appropriate incentive mechanisms can be implemented.

2.
New Phytol ; 235(5): 1927-1943, 2022 09.
Article in English | MEDLINE | ID: mdl-35701896

ABSTRACT

Golden buckwheat (Fagopyrum dibotrys or Fagopyrum cymosum) and Tartary buckwheat (Fagopyrum tataricum) belong to the Polygonaceae and the Fagopyrum genus is rich in flavonoids. Golden buckwheat is a wild relative of Tartary buckwheat, yet golden buckwheat is a traditional Chinese herbal medicine and Tartary buckwheat is a food crop. The genetic basis of adaptive divergence between these two buckwheats is poorly understood. Here, we assembled a high-quality chromosome-level genome of golden buckwheat and found a one-to-one syntenic relationship with the chromosomes of Tartary buckwheat. Two large inversions were identified that differentiate golden buckwheat and Tartary buckwheat. Metabolomic and genetic comparisons of golden buckwheat and Tartary buckwheat indicate an amplified copy number of FdCHI, FdF3H, FdDFR, and FdLAR gene families in golden buckwheat, and a parallel increase in medicinal flavonoid content. Resequencing of 34 wild golden buckwheat accessions across the two morphologically distinct ecotypes identified candidate genes, including FdMYB44 and FdCRF4, putatively involved in flavonoid accumulation and differentiation of plant architecture, respectively. Our comparative genomic study provides abundant genomic resources of genomic divergent variation to improve buckwheat with excellent nutritional and medicinal value.


Subject(s)
Fagopyrum , Ecotype , Fagopyrum/genetics , Fagopyrum/metabolism , Flavonoids , Gene Expression Profiling , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/metabolism
4.
Commun Biol ; 2: 136, 2019.
Article in English | MEDLINE | ID: mdl-31044161

ABSTRACT

The impact of climate change is causing challenges for the agricultural production and food systems. More nutritious and climate resilient crop varieties are required, but lack of available and accessible trait diversity is limiting crop improvement. Crop wild relatives (CWR) are the wild cousins of cultivated crops and a vast resource of genetic diversity for breeding new, higher yielding, climate change tolerant crop varieties, but they are under-conserved (particularly in situ), largely unavailable and therefore underutilized. Here we apply species distribution modelling, climate change projections and geographic analyses to 1261 CWR species from 167 major crop genepools to explore key geographical areas for CWR in situ conservation worldwide. We identify 150 sites where 65.7% of the CWR species identified can be conserved for future use.


Subject(s)
Climate Change , Conservation of Natural Resources , Crops, Agricultural , Models, Theoretical , Plant Dispersal , Plants, Edible , Algorithms , Biodiversity , Crops, Agricultural/genetics , Food Supply , Forecasting , Genetic Variation , Geography , Plant Breeding , Species Specificity
5.
Evol Appl ; 10(10): 965-977, 2017 12.
Article in English | MEDLINE | ID: mdl-29151853

ABSTRACT

Ensuring the availability of the broadest possible germplasm base for agriculture in the face of increasingly uncertain and variable patterns of biotic and abiotic change is fundamental for the world's future food supply. While ex situ conservation plays a major role in the conservation and availability of crop germplasm, it may be insufficient to ensure this. In situ conservation aims to maintain target species and the collective genotypes they represent under evolution. A major rationale for this view is based on the likelihood that continued exposure to changing selective forces will generate and favor new genetic variation and an increased likelihood that rare alleles that may be of value to future agriculture are maintained. However, the evidence that underpins this key rationale remains fragmented and has not been examined systematically, thereby decreasing the perceived value and support for in situ conservation for agriculture and food systems and limiting the conservation options available. This study reviews evidence regarding the likelihood and rate of evolutionary change in both biotic and abiotic traits for crops and their wild relatives, placing these processes in a realistic context in which smallholder farming operates and crop wild relatives continue to exist. It identifies areas of research that would contribute to a deeper understanding of these processes as the basis for making them more useful for future crop adaptation.

6.
Biotechnol Biotechnol Equip ; 28(1): 61-67, 2014 Jan 02.
Article in English | MEDLINE | ID: mdl-26019489

ABSTRACT

The present study aims to analyse phylogenetic relationships, using internal transcribed spacer sequence data of ribosomal DNA (rDNA), across 24 Citrus species and close relatives by the evaluation of several parameters such as nucleotide substitution (r), nucleotide diversity (π) and the estimated values of transition/transversion bias (R). The observed results indicated the presence of a wide divergence pattern of rDNA in subfamily Aurantioideae. Maximum parsimony (MP) analysis inferred divergence pattern in the Citrus genus. We observed seven strongly supported clades among the subfamily Aurantioideae. We postulate that the present investigation provides a more robust topology of Citrus and its close relatives, which can significantly prove as an additional support to resolve the phylogenetic relationships in Citrus genera. Therefore, sequences of noncoding regions should exhibit more phylogenetically informative sites than the coding regions do, which is in accordance with the present study.

SELECTION OF CITATIONS
SEARCH DETAIL
...